Replicating and Mitigating Spectre Attacks on
an Open Source RISC-V Microarchitecture

CARRYV 2019 — June 22", 2019 - Phoenix, Arizona
Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis

Krste Asanovic
University of California, Berkeley

Berkeley

UNIVERSITY OF CALIFORNIA

ADEPT

Berkeley
Architecture
Research

Outline

 Motivation

* Open-source Approach to Hardware
« BOOM: Berkeley Out-of-Order Machine

* Replicating Spectre Attacks on BOOM

* Implementing a Speculation Buffer
« Comparisons
* Implementation

 Conclusion

Motivation

Exploits Everywhere

Researchers discover seven new Meltdown

a n d S peCt re attaC kS SPOOKY ACTION AT A DISTANCE
Experiments showed that processors from AMD, ARM, and Intel are affected. New Spectre attack enables Secrets to be

It's no longer necessary to run attacker code on the victim system.

PETER BRIGHT - 7/26/2018, 2:40 PM

Intel LazyFP vulnerability: Exploiting lazy June 6 2018
FPU state switching

Beyond Spectre: Foreshadow, a new Intel
security problem

Researchers have broken Intel's Software Guard Extensions, System Management Mode, and x86-based virtual

machines.

Speculative Store Bypass explained: what it is, how it works

verZacm | Jon aetar Researchers discover SplitSpectre, a new
Spectre-like CPU attack

Why are Spectre-style attacks hard?

Attack Scenarios
User process attacks kernel
User process attacks user space
Intra-process sandbox escape
User process attacks enclaves

Remote timing attacks

N~

Spectre
Variations

Covert Channels
Changes in cache state
Power consumption
Resource contention (FPUs, buffers)

Leakage Mechanisms

Conditional branch
Indirect jump

Return instructions
Speculative store bypass
Data speculation

N

Taken from “Panel On the Implications of the Meltdown & Spectre Design Flaws”, ISCA 2018

Target CPUs
« ARM
Intel
« AMD
RISC-V

Mitigation Approaches

InvisiSpec/SafeSpec: Blocking unsafe loads from altering the data cache
DAWG: Partition data cache between security domains
StealthMem/CATalyst: Hide visibility of a secure memory region
Context-based fencing: Dynamically stop speculation in secure code

Compiler-inserted fencing: Statically analyze program for Spectre-
vulnerable snippets

Lots of interesting approaches, but how to compare them?
Use them together?

M. Yan, et. al. 2018. InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy. In MICRO.

K. N. Khasawneh, et. al. 2018. Safespec: Banishing the spectre of a meltdown with leakage-free speculation. Archived.

V. Kiriansky, et. al. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative Execution Processors. In MICRO.

T. Kim, et. al. 2012. STEALTHMEM: System-Level Protection Against Cache-Based Side Channel Attacks in the Cloud. In USENIX.

F. Liu, et. al. 2016. CATalyst: Defeating last-level cache side channel attacks in cloud computing. In HPCA.

M. Taram, et. Al. 2019. Context-Sensitive Fencing: Securing Speculative Execution via Microcode Customization. In ASPLOS.

Microsoft. 2018. Microsoft's compiler-level Spectre fix shows how hard this problem will be to solve. In Ars Technica. 6

Open-source Approach to Hardware

Open-source HW + Agile Design Tools + Fast
Simulation/Emulation = Security?

Large proliferation of open-source software stacks,
cores, and simulation/design infrastructure

The Open-source RISC-V Approach

Security benefits from open-source work

1. Think of new security mitigation/exploit
2. Use open-source RTL to start implementation

3. Quickly iterate through design development
with easy, fast, and free tooling

4. Open-source work and have others scrutinize or
use your work

(580D) 525ng eiEq UOWWOD

Modern Microarchitectures

aerettteen

Front End Instruction i Front End Instruction
Cache Tag| L1 Instruction Cache Cache Tag| L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction WOP Cache 32KiB 8-Way Instruction Branch Predictor | Return .
Tag TLB Tag TLB (BPL) Stack L1 Instruction Cache
16 Bytes/cycle 16 Bytes/cycle NanoBTB (16-entry) 64 KiB 4-Way Instruction TLB
Branch Branch - MicroBTB (64-entry) (48-entry)
Predictor Instruction Fetch & PreDecode Predictor Instruction Fetch & PreDecode Vain BT8 (680 tes/
(BPU) ‘ (16 B window) (BPU) (16 B window) 168 Y le
Mmop ™MOP MOP MOP MOP MOP 3 MoP MOP Mop Mop Mop MOP %
+] i | Instruction Fetch |
Instruction Queue 5 N~ | ‘?gguzf‘tz‘gﬁestﬂgg)e \é‘
(40, 2x20 entries) < : [} 4-8 Instrud:lonslcyde
[2} MoP HOP MOP o
MOP MOP MOP MOP MOP 2 s
MicroCode L\ay Decode | MicroCode J SatEse ‘ = | Decode Queue | \ g
Sequencer 2
ROM Complex ®
(MS ROM) Decoder C - o
ommercia Spectre-vu neraplie cores are compiex
]
4 poy
Decoded Stream Buffer (DSB)
out-of-order, and closed-source
(1.5k pOPs; 8-Way) u
(32 B window) C]
N
w
| 1
. . =
HOH N
Register Alias Table (RAT) |z, - [
° Y
: @ S
= Rename / Allocate / Retireme . - @ o
equivalent open-source academic core z
H op or op . @
t 1 0 [<
I Intager Physical Register Fil Sy Vactor Physical Ragister File o P Sten @ entries) ["] nopP nopP nop nopP nop HorP HoP nopP |"~.
[ity " | Unified Reservatian Statian (RS) R e e c g — & N =
Store (54 entries) 3| AN PWeyde [Pot0] [FPortl]| [Ports] [Port6]| [Portz]| [Port3] [Portd] [Port7] c i@ﬂ - sEanr] [AU] [Aw] [Am AL AL [Aau] [#eu] ol
[Poto | [Port1] [Pot5 | [Portz] [Pots | [Portd] 2 @ Q nop nop nop noP nop Hop nop Hop 5 AN 32B/cycle E MAC_| 2 [FADD FADD o1 N
Hop pop nop noP noP nor w @0 ToL3 g = Q / o B = DIV E FMUL FMUL N \%3
- > INT ALU INT ALU INT ALU AGU AGU Store Data AGU n| &8 o FDIV o,
o =a INT DIV | INT MUL 2 =& N 3
INT AL INT AL INTALD | [AGU | [AGU | [StoreData] Q INT Ve ct ALD| [INT Vect AL Bl £ < =
INT DIV INT MUL Wect Shuffle| |Load Data Load Data < NT Vect MU | NT Vect MUL| g [®
INT Vect ALU| [INT Vect ALU| [INT Vect ALU FP FMA FP_FMA a5ebit/cycls ()
INT Vect MUL| [FP ADD Branch Pk AES Bit 5 H H
e | e EUs Execution Engine bl
FP DIV EUs FP DIV Yo e —
Wect Shuffle Branch Data TLB 8=
— L1 Data Cache |azentry) g
Execution E . Enai _ . i=
) Load BuF Store BUffer & Forwarding Xecution ngine Store Buffer & Forwarding 64 KiB 4-Way
Engine (2h=/e] [T (36 entries) b o)
(64 entries)
Ia8feycle

16Ricycle 16B/cycle

| L1 Data Cache |Data LB |

aphd/gee

Data TLB

326feyele

Load Buffer L1 Df.‘tﬂ Cache

Intel Sandy Bridge

LFB)

Intel Skylake

apfojgaro

ARM A76 10

aphalaze xz

BOOM: The Berkeley Out-of-Order Machine

BOOM Overview

Open-source, out-of-order, superscalar
RISC-V core

* Runs RISC-V ISA RV64GC

* Linux-capable - boots Fedora + Buildroot |

» Silicon-proven - taped out s s T Dt
[Ceng?iéﬁp*]gééég—iéigzo;i? TERM=11inux ssh root®172.16.0.2

~18K LoC of open-source Chisel RTL
« Highly parameterizable and configurable

cat /proc/cpuinfo
hart 1 0

isa 1 rvedimafd

mmu 1 sv39

uarch : ucb-bar,boomd

ping twitter.com

L :un |ntegrat|0n Wlth ROCket Chlp, PING twitter.com (104.244.42.1): 56 data bytes

FireSim, HAMMER

64 bytes from 104.244.42.1: seq=0 ttl=42 time=0.406 ms
J. Bachrach, et. al. 2012. Chisel: constructing hardware in a scala embedded language. In DAC.
K. Asanovic, et. al. 2016. The Rocket Chip Generator. Technical Report.

S. Karandikar, et. al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the public cloud. In ISCA.

E. Wang, et. al. 2018. Hammer: Enabling Reusable Physical Design. In WOSET. 12

BOOM Microarchitecture

Register Read

Physical Integer RF
6R3W
100x64b

Physical FP RF
3R2W
64x65b

Fetch Decode Rename Issue
(4 cycles) and and
Rename Dispatch
Mem. Issue Queue
2
Oy
E
— =
5
pen
Fetch
Buffer
PCHFetchWidth IS ALU lIssue Queue
© %]
PC gD 22 \|l»=
— = = O = 8 g
— D w ST 3
v £ €N
K g g =
C Q %
A A g 04
] FP Issue Queue
v
— — O
s
A e
BTB S
' Backing Predictor ' ROB
S ok .
Commit
: W Ll ; "

Execute Writeback
D$ Shim
—ITTTT1SAQ To Int/EP
LT EJLAQ
U To Int
——
_x2
= BRIALU
™ — VT To Int/FP
—
> | &==—— ipiv RF
=3 Int2Fp
= FP2int
: To Int/FP
__x3| = _IFPDV | i
=— I FMA

13

Replicating Spectre Attacks

Spectre vl Overview

Speculation:

» Performance-seeking behavior of modern processors

« Execute instructions before we know they will commit

Side-channel:

« Microarchitectural state which holds interacts with program execution
« Caches, TLBs, power...

Typical Spectre attack:

1. Setup processor to misspeculate in victim code (e.g. train branch predictors)
2. Misspeculation leaks secret into a side channel

3. Attacker recovers secret from side channel

P. Kocher, et. al. 2018. Spectre attacks: Exploiting speculative execution. Archived. 15

Spectre vl Example

Steps: if (x < arrayl sz):
secret = arrayl|[x]

1. Access 1if statement multiple times out = array2[secret * amount]

correctly (predict 1f to fall-through)

2. Glve x > arrayl sz before after
3. Predict the if to be true and bring In array? array?
addresses addresses
secret and array?2 value
) . O*amount al I O*amount
4. Use the time difference between uncached cached
cached and uncached lines to Lramount Lramount
determine secret 2*amount 2*amount
5. Repeat! 3*amount

4*amount 4*amount

16

Components Needed — With BOOM?

« Branch Prediction
« Set associative BTB and GShare branch predictors

« Speculative Execution
» Out-of-order execution and branch kill masks for speculative execution

« Caching

« L1 data cache and a outer memory set to the latency of an L2 cache

« Cache Manipulation
« Custom-made L1 data cache clLflush

BOOM provides all the elements to replicate Spectre!

17

Spectre vl Running on FireSim

0 F"’eS”’n About Publications Docs Blog © GitHub ¥ Twitter % Mailing List

Easy-to-use, FPGA-accelerated Cycle-accurate
Hardware Simulation of RISC-V Systems in the

Cloud

What is FireSim?

FireSim is an cycle-accurate, FPGA-accelerated scale-out computer system simulation platform developed in the
Berkeley Architecture Research Group in the at the University of

California, Berkeley.

FireSim is capable of cycle-exactly simulating from one to thousands of multi-core compute nodes, derived directly from

S. Karandikar, et. al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the public cloud. In ISCA.

00O o

e e
B R L L
R

e e L
e e L I e L

VTR0 21 - 13- 14 came § bpwn- A0SO T V. g

.
I m IR B I v BEra " CE B EEE T I BEE = BB P b —— . e

R e e e

IR At b IR) - 21 B A 0. oo < miTaet e/

D T
e L e e R e e e I R

b Locond 1

T E I e e Sl P at el mt s oo Bl s BB L B ——— .., —

workhont s serces 13 Tecater tao
M'. SHE L2) Yerniaeted Y

D e L L R X N L e e e L L L L LR X TRy W

‘ﬂ Weviatims a'v WYL Swvim.

SR DR R TR LI R LB OTT AR E R G P DEB R TER RO GGG B BT s WY L A——————
e B . - - —a0O et tmee -

Lreon Vrnhatton Yumes § M09 40 L3 (LY 0501
uu--'""";miﬁfiii:ifiﬁ';°-u"" O

__
HLET

sty 1SRt wwm 3Ets
annk i mmmw

ccaaueu. b prdh b b ok, Bl Bl b b 1

NI IR

T i ﬂ:ﬁﬁ:
T _,__ésa_aé

i

‘ -
EFEHEEEEERELE HEHE

ARERAEIET BRAEESRSRRERERNNNNEYY

HHTTIEE Qe
R

(EBEEERREE ERRRREREIIERIENREREEEE

dassiras i i iiadaisiizasiists

T e

u‘-'-l.o.oo.. e

T B

42
:

.
:
A
i
m
:
!
“
}

Implementing a Speculation Buffer

Protecting Data Caches

Problem: Load refills are not subject

to architectural guarantees 1d te, 0(se)

» Misspeculated loads leave side- blt te, a0, end
effects, creating a side-channel s11 t1, te, 2

Solution: Treat the data cache as add t2, al, t1 2 Misspeculated region

an architectural structure ld t3, o(t2) ‘

» Only alter the cache state when end: e el
Instructions commit Block speculative cache *

» Implement a working prototype in refills

B O O M RT L Data Cache

21

Prior Work

InvisiSpec
Address

 Per load-queue-entry speculation

b u ﬁe r F'erformcd} Status

|| State: Bits

. Sp_eculation-aware cache-coherence Evicn

policy o
Safespec
« Speculation-depth sized “shadow

Stru Ctu reS” Address Mask

* Protect DCache, ICache, TLBs
BOOM Speculation Buffer: l
Shadow dTLB

 Hold speculated loads in line-fill- d-cache d-cache
buffers T f

Shadow dTLR

M. Yan, et. al. 2018. InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy. In MICRO.
K. N. Khasawneh, et. al. 2018. Safespec: Banishing the spectre of a meltdown with leakage-free speculation. Archived. 22

Life of a Misspeculated Load

Data/tag arrays modified by
unsafe instructions/
Side-channel

Outer Memory

MSHR N

Load Queue MSHR 1
Tag Array MSHR 0
Ox1

cheak 0x3
X Miss. Replay Queue

tags 05 allodate MSHR
> 0x2 > —t—> Get(0x200)

ldq[5]
ldq[4]

Data Array <

0x200

To core fRefill(0x200)
< Oxabbccdde <

23

Blocking Misspeculated Loads

Data/tag arrays protected from

_ _ Outer Memory
misspeculation

|
I
MSHR N |
Load Queue MSHR 1 |
Tag Array MSHR 0 I
Ox1 |
checak 0x3 Miss Replay Queue |
tag$ 0 allogate MSHR I
> Ox7 > > Ge1(0x200)
ldq[5]
Idq[4]
Data Array

Refill(0x200)

To core
< 24

Blocking Misspeculated Loads

Outer Memory

|
I
MSHR N |
Load Queue MSHR 1 |
Tag Array e |
Ox1 |
check 0x3 Miss Replay Queue |
tags 20 allocate MSHR I
Id 0x200 > 0x2 > —t—> Get(0x200)
Id 0x202 |
Data Array I
I
0x200 I
I .
T — < Speculation Buffer < : Refill(0x200)
Oxabbccdde I
|
To core i
< 25

Blocking Misspeculated Loads

* Load refills wait in the buffer until one of their misses has committed

« Stall writeback until one of the following occurs
* Aload-miss to that line has committed OR
« A store-miss hits that line (stores are non-speculative)

* If all load misses to that line were misspeculated, discard it

» Bypass loads out of the load-fill-buffer
« Subsequent loads “see” the data in the DCache
« Minimizes performance penalty

26

Committing Loads

When to commit load refills to the
DCache?

« When the ROB commits the load?

* Most secure.
* Huge performance penalty for load
misses
 When the load is free from branches?
* Does not consider exceptions/interrupts
« Minimal performance penalty

* When the load reaches the
point-of-no-return

 New ROB pointer, tracks instructions
which are guaranteed to commit

True
False
Don't care

Tail

Group of
Safe Rows

_.<

Next PNR Fast

Next PNR Simple

Current PNR

Head

27

Speculation Buffer Results

1 month implementation time Version of BOOM
. With
MleObenChmarkS Benchmark Normal Se$tion &

Difference

Buffer

« Set of assembly routines to test
edge cases

Non-speculative LD

Dhrystone results misses to same sets | >0 cyeles | 640 cycles -19%
* Original: 2176 dps
P SpeCUIatlon buffer: 2216 dps Non-speculative LD 264 cycles | 297 cycles -11%

misses to different sets

* Impact: ~2% better IPC
Preliminary physical results in TSMC

45n M MSHR evicted 48 cycles 67 cycles -40%

speculative LD misses
« ~3% larger area

Dhrystone 2176 dps 2216 dps +2%

28

Comparison

InvisiSpec SafeSpec BOOM Speculation
Buffer
Implementation Custom GEM5 Marssx86 BOOM RTL
Platform
Buffer size Additional cacheline * Additional cacheline * Repurposed line-fill-

load-queue-size

speculation depth

buffers

Commit condition

Wait for branch OR
Wait for non-speculative

Wait for branch OR
Wait for commit

Wait for point-of-no-return

Physical design
feedback

CACTI estimates

CACTI estimates

Trial TSMC 45nm
Implementation

Protected components

L1D, LLC, multicores

L1D, L1I, TLBs

L1D

Performance impact

-22% performance

+3% performance

+2% performance

29

Conclusion

™ . |
.-_. o‘,..C.AL_;Rc,‘ A
[| & 91' "
L= S
F oo o L \
] Y4)
i3 3 4
%02 e ald
o D 0 A~
e, T v
W 0 A |
ey 1868 Ll
. .
R

Demonstrated application of RISC-V ecosystem towards secure
hardware

» Working demonstrations of Spectre attacks on a RISC-V core

* RTL of Spectre mitigation available in an open-source core
Continue improving BOOM security

« Secure other structures: TLBs, ICache, LLC, branch predictors

« Enable secure enclave execution

BOOMv3 Tapeout + More Attacks

* Planning to add Speculation Buffer and CSRs to enable/disable it
* More attacks with different predictors/structures (TAGE, RAS, etc)

31

Questions?

Thanks CARRV19!

Contact: {abe.gonzalez,bkorpan,jzh,edyounis,krste}@berkeley.edu

Links: Thanks:
» Core: boom-core.org « Chris Celio, David Kohlbrenner
 Github: github.com/riscv-boom « UCB ADEPT Lab

* FireSim: fires.im
« HAMMER: github.com/ucb-bar/hammer

32

